Nanostructures from Synthetic Genetic Polymers

نویسندگان

  • Alexander I. Taylor
  • Fabienne Beuron
  • Sew‐Yeu Peak‐Chew
  • Edward P. Morris
  • Piet Herdewijn
  • Philipp Holliger
چکیده

Nanoscale objects of increasing complexity can be constructed from DNA or RNA. However, the scope of potential applications could be enhanced by expanding beyond the moderate chemical diversity of natural nucleic acids. Here, we explore the construction of nano-objects made entirely from alternative building blocks: synthetic genetic polymers not found in nature, also called xeno nucleic acids (XNAs). Specifically, we describe assembly of 70 kDa tetrahedra elaborated in four different XNA chemistries (2'-fluro-2'-deoxy-ribofuranose nucleic acid (2'F-RNA), 2'-fluoroarabino nucleic acids (FANA), hexitol nucleic acids (HNA), and cyclohexene nucleic acids (CeNA)), as well as mixed designs, and a ∼600 kDa all-FANA octahedron, visualised by electron microscopy. Our results extend the chemical scope for programmable nanostructure assembly, with implications for the design of nano-objects and materials with an expanded range of structural and physicochemical properties, including enhanced biostability.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Exploring the Chemistry of Genetic Information Storage and Propagation through Polymerase Engineering

Nucleic acids are a distinct form of sequence-defined biopolymer. What sets them apart from other biopolymers such as polypeptides or polysaccharides is their unique capacity to encode, store, and propagate genetic information (molecular heredity). In nature, just two closely related nucleic acids, DNA and RNA, function as repositories and carriers of genetic information. They therefore are the...

متن کامل

Application of synthetic polymers as adsorbents for the removal of cadmium from aqueous solutions: Batch experimental studies

In the present study seven synthetic polymers were used as adsorbents for the removal of Cd(II) from aqueous solution. The equilibrium studies were systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent dosage, and pH of the aqueous solution. The analyzing system was an atomic absorption spectrometer (Perkin-Analyst 100). It was...

متن کامل

Batch experimental studies of Hg(II) ion removal from aqueous solution using seven synthetic polymers

In this work application of seven synthetic polymers as adsorbents for the removal of Hg(II) from aqueous solution was studied. The equilibrium studies are systematically carried out in a batch process, covering various process parameters that include agitation time, adsorbent dosage, and pH of the aqueous solution. Variations of Hg(II) concentration in solution have been studied through measur...

متن کامل

Biodegradable polymer matrix nanocomposites for tissue engineering: A review

Nanocomposites have emerged in the last two decades as an efficient strategy to upgrade the structural and functional properties of synthetic polymers. Aliphatic polyesters as polylactide (PLA), poly(glycolides) (PGA), poly(3-caprolactone) (PCL) have attracted wide attention for their biodegradability and biocompatibility in the human body. A logic consequence has been the introduction of organ...

متن کامل

A Systematic Study on the Self-Assembly Behaviour of Multi Component Fmoc-Amino Acid-Poly(oxazoline) Systems

We report a systematic study of a modular approach to create multi-component supramolecular nanostructures that can be tailored to be both enzyme and temperature responsive. Using a straightforward synthetic approach we functionalised a thermal responsive polymer, poly(2-isopropyl-2-oxazoline), with fluorenylmethoxycarbonyl-amino acids that drive the self-assembly. Depending on the properties o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 17  شماره 

صفحات  -

تاریخ انتشار 2016